
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information

This paper studies the dynamic application of the minimax regret (MR) decision criterion to identify robust flood risk management strategies under climate change uncertainty and emerging information. An MR method is developed that uses multiple learning scenarios, for example about sea level rise or river peak flow development, to analyse effects of changes in information on optimal investment in flood protection. To illustrate the method, optimal dike height and floodplain development are studied in a conceptual model, and conventional and adaptive MR solutions are compared. A dynamic application of the MR decision criterion allows investments to be changed after new information on climate change impacts, which has an effect on today’s optimal investments. The results suggest that adaptive MR solutions are more robust than the solutions obtained from a conventional MR analysis of investments in flood protection. Moreover, adaptive MR analysis with multiple learning scenarios is more general and contains conventional MR analysis as a special case.
- Wageningen University & Research Netherlands
- University of Malaga Spain
- Economic Policy Institute United States
- Economic Policy Institute United States
Robust optimisation, Climate change, Flood risk, Learning, Flexibility, Adaptive management, Minimax regret
Robust optimisation, Climate change, Flood risk, Learning, Flexibility, Adaptive management, Minimax regret
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
