Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental and Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental and Resource Economics
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2018
Data sources: HAL INRAE
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Groundwater Management in a Food Security Context

Authors: Jean-Christophe Pereau; Laurianne Mouysset; Laurianne Mouysset; Luc Doyen;

Groundwater Management in a Food Security Context

Abstract

This article analyzes the sustainability of market-based instruments such as tradable permits for the management of a renewable aquifer used for irrigated agriculture. In our dynamic hydro-economic model, a water agency aims at satisfying a food security constraint within a tradable permit scheme in the presence of myopic heterogeneous agents. We identify analytically the viability kernel that defines the states of the resource yielding inter-temporal feasible paths able to satisfy the set of constraints over time and the associated set of viable quota policies. We then illustrate the theoretical results of the paper with numerical simulations based on the Western La Mancha aquifer.

Country
France
Keywords

Groundwater Management, Numerical Method, irrigation, Food Supply, JEL: C - Mathematical and Quantitative Methods/C.C6 - Mathematical Methods • Programming Models • Mathematical and Simulation Modeling/C.C6.C61 - Optimization Techniques • Programming Models • Dynamic Analysis, groundwater, [SHS.ECO] Humanities and Social Sciences/Economics and Finance, Groundwater, agriculture, sustainable development, [QFIN]Quantitative Finance [q-fin], Groundwater Resources, Agriculture, Heterogeneous Agents, Sustainable Development, [SHS.ECO]Humanities and Social Sciences/Economics and Finance, [QFIN] Quantitative Finance [q-fin], eau souterraine, Dynamic Model, Aquifers, Individual Permits, Sustainability, individual permits, développement durable, modèle dynamique, Economic Modeling, Water Management, 330, Irrigated Agriculture, dynamic model, JEL: Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q2 - Renewable Resources and Conservation/Q.Q2.Q25 - Water, JEL: Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q1 - Agriculture/Q.Q1.Q15 - Land Ownership and Tenure • Land Reform • Land Use • Irrigation • Agriculture and Environment, Viability Kernel, Irrigation, securité alimentaire, viability kernel, Food Security, Market-Based Instruments, Aquifer, Dynamic Models, Model, jel: jel:Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q1 - Agriculture/Q.Q1.Q15 - Land Ownership and Tenure • Land Reform • Land Use • Irrigation • Agriculture and Environment, jel: jel:Q - Agricultural and Natural Resource Economics • Environmental and Ecological Economics/Q.Q2 - Renewable Resources and Conservation/Q.Q2.Q25 - Water, jel: jel:C - Mathematical and Quantitative Methods/C.C6 - Mathematical Methods • Programming Models • Mathematical and Simulation Modeling/C.C6.C61 - Optimization Techniques • Programming Models • Dynamic Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
bronze