
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The effect of land use in the catchment and meteorological conditions on the riverine transport of dissolved organic carbon into the Puck Lagoon (southern Baltic)

pmid: 30128607
Dissolved organic carbon (DOC) concentration and fluxes from four rivers draining the catchment of the Puck Lagoon in southern Baltic are presented. Water samples from rivers and coastal zone close to the rivers' mouth were collected from April 2015 to March 2017. DOC was measured using high temperature catalytic oxidation with an NDIR detection. DOC concentration in rivers as well as area specific load discharged to the lagoon reflected variations of land use along their course. Area specific load of DOC discharged by rivers with high proportion of forests, meadows, and pastures in the catchment was significantly higher as compared to rivers with catchment dominated by arable land. However, the main controlling factor of the total discharged loads of DOC was the water flow. The highest loads were observed during the downpour. That was due to the larger volumes of water transported with rivers and the higher concentration of DOC resulting from increased leaching from the catchment area. The obtained results are especially important in the light of climate change in the southern Baltic region. According to the forecasts, we can expect increased precipitation and flooding and consequently increased leaching from the catchment and transport of DOC to the sea via rivers.
- University of Gdańsk Poland
Climate Change, Rain, Forests, Carbon, Floods, Meteorology, Rivers, Water Movements, Poland, Environmental Monitoring
Climate Change, Rain, Forests, Carbon, Floods, Meteorology, Rivers, Water Movements, Poland, Environmental Monitoring
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
