
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Coupled Process Models as a Tool for Analysing Hydrothermal Systems

Hydrothermal systems are characterised by complex interactions between heat transfer, fluid flow, deformation, species transport and chemical reactions. Numerical models can provide quantitatively constrained information in regions where acquisition of new data is difficult or expensive thus providing a means for reducing risks, costs, and effort during targeting, production, and management of resources linked to hydrothermal systems. Here we show how numerical simulations of hydrothermal processes can be used to better understand coupled reactive transport in modern geothermal systems and in ancient hydrothermal ore deposits. We give examples based on the Enhanced Geothermal System at Soultz-sous-Forets in France, hydrothermal mineralisation at Mount Isa in Australia, and the geothermal resource at Hamburg-Allermohe in Germany.
550 - Earth sciences
550 - Earth sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
