Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade Federal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hydrobiologia
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Extreme drought favors potential mixotrophic organisms in tropical semi-arid reservoirs

Authors: Leonel da Silveira Lobo Sternberg; Mariana Rodrigues Amaral da Costa; Vanessa Becker; Hugo Sarmento; Rosemberg Fernandes Menezes; Rosemberg Fernandes Menezes; José Luiz Attayde;

Extreme drought favors potential mixotrophic organisms in tropical semi-arid reservoirs

Abstract

Climate change is affecting the global hydrological cycle and is causing drastic changes in the freshwater hydrological regime. Water level (WL) reduction caused by drought tends to increase the concentration of nutrients favoring the dominance of cyanobacteria. We hypothesized that the WL reduction favors the dominance of cyanobacteria at regular dry conditions, but at extremely dry events mixotrophic algae would thrive because of light limitation due to increased resuspension of sediments on the water column. To test our hypothesis, we compared phytoplankton traits and water quality variables between two sets of reservoirs located in two watersheds with contrasting precipitation regimes within the Brazilian semi-arid. The reservoirs were compared in a dry period and in an extremely dry period to evaluate the response of the variables to an extreme drought. Drought intensification decreased the reservoirs’ WL and water transparency and increased the total phosphorous. Cyanobacteria dominated in the dry period, and the contribution of mixotrophic algae increased in the extremely dry period. Thus, phytoplankton with mixotrophic potential was favored by the extreme drought. This result suggests that this can be one possible scenario for phytoplankton communities in reservoirs of semi-arid regions if extreme droughts become more frequent because of climate change.

Country
Brazil
Keywords

550, Cyanobacteria, Water quality, Phytoplankton, Climate change, Water level reduction, Functional traits

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Green