Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Phycology
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis and modeling of Nannochloropsis growth in lab, greenhouse, and raceway experiments

Authors: Aaron M. Collins; Scott C. James; Patricia E. Gharagozloo; Christopher Y. Choi; Jessica L. Drewry; Thomas A. Dempster;

Analysis and modeling of Nannochloropsis growth in lab, greenhouse, and raceway experiments

Abstract

Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Moreover, algae-based biofuels are attractive for their large oil yield potential despite decreased land use and natural resource (e.g., water and nutrients) requirements compared to terrestrial energy crops. Important factors controlling algal lipid productivity include temperature, nutrient availability, salinity, pH, and the light-to-biomass conversion rate. Computational approaches allow for inexpensive predictions of algae growth kinetics for various bioreactor sizes and geometries without the need for multiple, expensive measurement systems. Parametric studies of algal species include serial experiments that use off-line monitoring of growth and lipid levels. Such approaches are time consuming and usually incomplete, and studies on the effect of the interaction between various parameters on algal growth are currently lacking. However, these are the necessary precursors for computational models, which currently lack the data necessary to accurately simulate and predict algae growth. In this work, we conduct a lab-scale parametric study of the marine alga Nannochloropsis salina and apply the findings to our physics-based computational algae growth model. We then compare results from the model with experiments conducted in a greenhouse tank and an outdoor, open-channel raceway pond. Results show that the computational model effectively predicts algae growth in systems across varying scale and identifies the causes for reductions in algal productivities. Applying the model facilitates optimization of pond designs and improvements in strain selection.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
bronze