Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chemical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chemical Ecology
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phenolic Responses of Mountain Crowberry (Empetrum nigrum ssp. hermaphroditum) to Global Climate Change are Compound Specific and Depend on Grazing by Reindeer (Rangifer tarandus)

Authors: Väisänen, M.; Martz, F.; Kaarlejärvi, E.; Julkunen-Tiitto, R.; Stark, S.;

Phenolic Responses of Mountain Crowberry (Empetrum nigrum ssp. hermaphroditum) to Global Climate Change are Compound Specific and Depend on Grazing by Reindeer (Rangifer tarandus)

Abstract

Mountain crowberry (Empetrum nigrum ssp. hermaphroditum) is a keystone species in northern ecosystems and exerts important ecosystem-level effects through high concentrations of phenolic metabolites. It has not been investigated how crowberry phenolics will respond to global climate change. In the tundra, grazing by reindeer (Rangifer tarandus) affects vegetation and soil nutrient availability, but almost nothing is known about the interactions between grazing and global climate change on plant phenolics. We performed a factorial warming and fertilization experiment in a tundra ecosystem under light grazing and heavy grazing and analyzed individual foliar phenolics and crowberry abundance. Crowberry was more abundant under light grazing than heavy grazing. Although phenolic concentrations did not differ between grazing intensities, responses of crowberry abundance and phenolic concentrations to warming varied significantly depending on grazing intensity. Under light grazing, warming increased crowberry abundance and the concentration of stilbenes, but decreased e.g., the concentrations of flavonols, condensed tannins, and batatasin-III, resulting in no change in total phenolics. Under heavy grazing, warming did not affect crowberry abundance, and induced a weak but consistent decrease among the different phenolic compound groups, resulting in a net decrease in total phenolics. Our results show that the different phenolic compound groups may show varying or even opposing responses to warming in the tundra at different levels of grazing intensity. Even when plant phenolic concentrations do not directly respond to grazing, grazers may have a key control over plant responses to changes in the abiotic environment, reflecting multiple adaptive purposes of plant phenolics and complex interactions between the biotic and the abiotic factors.

Country
Finland
Keywords

Norway, Climate Change, 630, Plant Leaves, Phenols, Animals, Ericaceae, Herbivory, Reindeer

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%