Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Thermal A...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thermal Analysis and Calorimetry
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exergetic, exergo-economic, and exergo-environmental analyses of a trigeneration system driven by biomass and natural gas

Authors: Mohammad Jalili; Roghayeh Ghasempour; Mohammad Hossein Ahmadi; Ata Chitsaz; Shahriyar Ghazanfari Holagh;

Exergetic, exergo-economic, and exergo-environmental analyses of a trigeneration system driven by biomass and natural gas

Abstract

The main purpose of this paper is to study the thermodynamic, economic, and environmental aspects of a integrated system combined cooling, heating, and power generation system empowered by biomass and natural gas. Eco-Indicator 99 method is utilized to quantify the environmental impact. The proposed system consists of four main subsystems producing power, heating, and cooling. Natural gas is mixed with the syngas to enhance its heating value. The results indicate that the exergy efficiency of system is 39.45%, the products cost per exergy unit is 9.71 $ h−1, and the products environmental impact per exergy unit is 4422 mpt GJ−1. Also, when the natural gas mass flow rate-to-syngas mass flow rate ratio increases from 0 to 0.5, the exergy efficiency is found to improve by 71.97%, whereas the products cost per exergy unit and environmental impact per exergy unit of total products are seen to decline by 70.75 and 64.09%, correspondingly. Additionally, the exergy efficiency enhances by 19.48%, while the cost and environmental impact per exergy unit of the total products drop by 13.39 and 13.02%, respectively, as the splitter separation ratio increases from 0 to1.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 1%