
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of nitrate concentration on the denitrification potential of a calcic cambisol and its fractions of N2, N2O and NO

handle: 10568/34471
The direct measurement of denitrification dynamics and its product fractions is important for parameterizing process-oriented model(s) for nitrogen cycling in various soils. The aims of this study are to a) directly measure the denitrification potential and the fractions of nitrogenous gases as products of the process in laboratory, b) investigate the effects of the nitrate (NO 3 − ) concentration on emissions of denitrification gases, and c) test the hypothesis that denitrification can be a major pathway of nitrous oxide (N2O) and nitric oxide (NO) production in calcic cambisols under conditions of simultaneously sufficient supplies of carbon and nitrogen substrates and anaerobiosis as to be found to occur commonly in agricultural lands. Using the helium atmosphere (with or without oxygen) gas-flow-soil-core technique in laboratory, we directly measured the denitrification potential of a silt clay calcic cambisol and the production of nitrogen gas (N2), N2O and NO during denitrification under the conditions of seven levels of NO 3 − concentrations (ranging from 10 to 250 mg N kg−1 dry soil) and an almost constant initial dissolved organic carbon concentration (300 mg C kg−1 dry soil). Almost all the soil NO 3 − was consumed during anaerobic incubation, with 80–88 % of the consumed NO 3 − recovered by measuring nitrogenous gases. The results showed that the increases in initial NO 3 − concentrations significantly enhanced the denitrification potential and the emissions of N2 and N2O as products of this process. Despite the wide range of initial NO 3 − concentrations, the ratios of N2, N2O and NO products to denitrification potential showed much narrower ranges of 51–78 % for N2, 14–36 % for N2O and 5–22 % for NO. These results well support the above hypothesis and provide some parameters for simulating effects of variable soil NO 3 − concentrations on denitrification process as needed for biogeochemical models.
- Chinese Academy of Sciences China (People's Republic of)
- Karlsruhe Institute of Technology Germany
- CGIAR Consortium France
- CGIAR France
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry China (People's Republic of)
climate change, agriculture, soil
climate change, agriculture, soil
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
