Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wageningen Staff Pub...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2006
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other literature type . 2006
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Photosynthesis Research
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparison of the three isoforms of the light-harvesting complex II using transient absorption and time-resolved fluorescence measurements

Authors: Bart van Oort; Ivo H. M. van Stokkum; Herbert van Amerongen; Miguel A. Palacios; Miguel A. Palacios; Rienk van Grondelle; Mikas Vengris; +2 Authors

A comparison of the three isoforms of the light-harvesting complex II using transient absorption and time-resolved fluorescence measurements

Abstract

In this article we report the characterization of the energy transfer process in the reconstituted isoforms of the plant light-harvesting complex II. Homotrimers of recombinant Lhcb1 and Lhcb2 and monomers of Lhcb3 were compared to native trimeric complexes. We used low-intensity femtosecond transient absorption (TA) and time-resolved fluorescence measurements at 77 K and at room temperature, respectively, to excite the complexes selectively in the chlorophyll b absorption band at 650 nm with 80 fs pulses and on the high-energy side of the chlorophyll a absorption band at 662 nm with 180 fs pulses. The subsequent kinetics was probed at 30-35 different wavelengths in the region from 635 to 700 nm. The rate constants for energy transfer were very similar, indicating that structurally the three isoforms are highly homologous and that probably none of them play a more significant role in light-harvesting and energy transfer. No signature has been found in the transient absorption measurements at 77 K for Lhcb3 which might suggest that this protein acts as a relative energy sink of the excitations in heterotrimers of Lhcb1/Lhcb2/Lhcb3. Minor differences in the amplitudes of some of the rate constants and in the absorption and fluorescence properties of some pigments were observed, which are ascribed to slight variations in the environment surrounding some of the chromophores depending on the isoform. The decay of the fluorescence was also similar for the three isoforms and multi-exponential, characterized by two major components in the ns regime and a minor one in the ps regime. In agreement with previous transient absorption measurements on native LHC II complexes, Chl b --> Chl a energy transfer exhibited very fast channels but at the same time a slow component (ps). The Chls absorbing at around 660 nm exhibited both fast energy transfer which we ascribe to transfer from 'red' Chl b towards 'red' Chl a and slow transfer from 'blue' Chl a towards 'red' Chl a. The results are discussed in the context of the new available atomic models for LHC II.

Country
Netherlands
Keywords

Chlorophyll, Time Factors, lhc-ii, ultrafast energy-transfer, green plants, Fluorescence, Absorption, Absorptiometry, Photon, Spinacia oleracea, Protein Isoforms, SDG 7 - Affordable and Clean Energy, Plant Proteins, a/b-binding-protein, major plant antenna, excitation-energy, Chlorophyll A, Photosystem II Protein Complex, chloroplast membranes, circular-dichroism, transfer dynamics, Energy Transfer, photosystem-ii

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%