
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analytical Solutions for Ground Temperature Profiles and Stored Energy Using Meteorological Data

Analytical solutions to estimate temperature with depth and stored energy within a soil column based upon readily available meteorological data are presented in this paper, which are of particular relevance in the field of ground heat extraction and storage. The transient one dimensional heat diffusion equation is solved with second kind (Neumann) boundary conditions at the base and third kind (Robin) boundary conditions, based on a heat balance, at the soil surface. In order to describe the soil-atmosphere interactions, mathematical expressions describing the daily and annual variation of solar radiation and air temperature are proposed. The presented analytical solutions are verified against a numerical solution and applied to investigate a case-study problem based upon results of a field experiment. It is shown that the proposed analytical approach can offer a reasonable estimate of the thermal behaviour of the soil requiring no information from the soil other than its thermal properties. Comparisons of predicted and measured soil temperature profiles and stored energy transients demonstrate there is reasonable overall agreement. The research contributes a practical approach that can provide surface boundary data that are vital in the thermal analysis of many engineering problems. Applications include: inter-seasonal heat transfer, energy piles and other more established ground source heat utilization methods.
- Cardiff University United Kingdom
- Cardiff University United Kingdom
TA
TA
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
