

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fast and efficient energy-oriented cell assignment in heterogeneous networks

handle: 2117/134952
Le problème d'affectation des cellules est combinatoire, avec une complexité accrue lorsqu'il est abordé compte tenu de l'allocation des ressources. Ce document modélise l'affectation conjointe des cellules et l'affectation des ressources pour les réseaux hétérogènes cellulaires, et formalise l'affectation des cellules en tant que problème d'optimisation. Les algorithmes exacts peuvent trouver des solutions optimales au problème d'affectation des cellules, mais leur temps d'exécution augmente considérablement avec des déploiements de réseau réalistes. À leur tour, les heuristiques sont capables de trouver des solutions dans des délais d'exécution raisonnables, mais elles sont généralement bloquées dans des optima locaux, ne trouvant donc pas de solutions optimales. Les approches métaheuristiques ont réussi à trouver des solutions plus proches de l'optimum que les problèmes combinatoires pour les grands cas. Dans cet article, nous proposons une heuristique rapide et efficace qui donne des solutions d'affectation de cellules très compétitives par rapport à celles obtenues avec trois des métaheuristiques les plus largement utilisées, qui sont connues pour trouver des solutions proches de l'optimum en raison de la nature de leur exploration de l'espace de recherche. Notre approche heuristique ajoute une réduction des dépenses énergétiques dans sa conception algorithmique. Grâce à la simulation et à l'analyse statistique formelle, le système proposé s'est avéré produire des affectations efficaces en termes de nombre d'utilisateurs desservis, d'allocation de ressources et d'économies d'énergie, tout en étant un ordre de grandeur plus rapide que les approches métaheuritsiques.
El problema de asignación de celdas es combinatorio, con una mayor complejidad cuando se aborda teniendo en cuenta la asignación de recursos. Este documento modela la asignación conjunta de celdas y la asignación de recursos para redes celulares heterogéneas, y formaliza la asignación de celdas como un problema de optimización. Los algoritmos exactos pueden encontrar soluciones óptimas al problema de asignación de celdas, pero su tiempo de ejecución aumenta drásticamente con implementaciones de red realistas. A su vez, las heurísticas son capaces de encontrar soluciones en tiempos de ejecución razonables, pero generalmente se quedan atascadas en los óptimos locales, por lo que no encuentran soluciones óptimas. Los enfoques metaheurísticos han tenido éxito en la búsqueda de soluciones más cercanas a la óptima para problemas combinatorios para grandes instancias. En este artículo proponemos una heurística rápida y eficiente que produce soluciones de asignación de celdas muy competitivas en comparación con las obtenidas con tres de las metaheurísticas más utilizadas, que se sabe que encuentran soluciones cercanas a las óptimas debido a la naturaleza de su exploración del espacio de búsqueda. Nuestro enfoque heurístico añade una reducción del gasto energético en su diseño algorítmico. A través de la simulación y el análisis estadístico formal, se ha demostrado que el esquema propuesto produce asignaciones eficientes en términos del número de usuarios atendidos, la asignación de recursos y el ahorro de energía, a la vez que es un orden de magnitud más rápido que los enfoques basados en metaheurística.
The cell assignment problem is combinatorial, with increased complexity when it is tackled considering resource allocation. This paper models joint cell assignment and resource allocation for cellular heterogeneous networks, and formalizes cell assignment as an optimization problem. Exact algorithms can find optimal solutions to the cell assignment problem, but their execution time increases drastically with realistic network deployments. In turn, heuristics are able to find solutions in reasonable execution times, but they get usually stuck in local optima, thus failing to find optimal solutions. Metaheuristic approaches have been successful in finding solutions closer to the optimum one to combinatorial problems for large instances. In this paper we propose a fast and efficient heuristic that yields very competitive cell assignment solutions compared to those obtained with three of the most widely-used metaheuristics, which are known to find solutions close to the optimum due to the nature of their search space exploration. Our heuristic approach adds energy expenditure reduction in its algorithmic design. Through simulation and formal statistical analysis, the proposed scheme has been proved to produce efficient assignments in terms of the number of served users, resource allocation and energy savings, while being an order of magnitude faster than metaheuritsic-based approaches.
مشكلة تخصيص الخلايا هي مشكلة اندماجية، مع زيادة التعقيد عند معالجتها مع مراعاة تخصيص الموارد. تقوم هذه الورقة بنمذجة تخصيص الخلايا المشتركة وتخصيص الموارد للشبكات الخلوية غير المتجانسة، وإضفاء الطابع الرسمي على تخصيص الخلايا كمشكلة تحسين. يمكن للخوارزميات الدقيقة العثور على الحلول المثلى لمشكلة تعيين الخلية، ولكن وقت تنفيذها يزداد بشكل كبير مع عمليات نشر الشبكة الواقعية. في المقابل، يستطيع الاستدلال إيجاد حلول في أوقات تنفيذ معقولة، لكنهم عادة ما يعلقون في الوضع الأمثل المحلي، وبالتالي يفشلون في إيجاد الحلول المثلى. نجحت الأساليب الماورائية في إيجاد حلول أقرب إلى الحل الأمثل للمشاكل التوافقية في الحالات الكبيرة. نقترح في هذه الورقة الاستكشافية السريعة والفعالة التي تسفر عن حلول تعيين خلية تنافسية للغاية مقارنة بتلك التي تم الحصول عليها مع ثلاثة من metaheuristics الأكثر استخدامًا، والتي من المعروف أنها تجد حلولًا قريبة من الأمثل نظرًا لطبيعة استكشافهم لفضاء البحث. يضيف نهجنا الاستكشافي تخفيضًا في إنفاق الطاقة في تصميمه الخوارزمي. من خلال المحاكاة والتحليل الإحصائي الرسمي، ثبت أن المخطط المقترح ينتج مهامًا فعالة من حيث عدد المستخدمين الذين يتم خدمتهم وتخصيص الموارد وتوفير الطاقة، بينما يكون ترتيبًا من حيث الحجم أسرع من النهج القائمة على metaheuritsic.
Dense networks, Ad Hoc Wireless Networks Research, Artificial intelligence, :Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors [Àrees temàtiques de la UPC], Computer Networks and Communications, Geometry, Metaheuristic, Heuristic, Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors, Cooperative Diversity in Wireless Networks, Generalized assignment problem, Cell assignment, FOS: Mathematics, Heuristics, Network Architecture, Optimization problem, Resource allocation, Content-Centric Networking for Information Delivery, Comunicació sense fil, Computer network, Mathematical optimization, Cellular networks, Computer science, Wireless communication systems, Sistemes de, Algorithm, Operating system, Energy efficiency, Comunicació sense fil, Sistemes de, Computer Science, Physical Sciences, Assignment problem, Heterogeneous networks, Reduction (mathematics), Mathematics
Dense networks, Ad Hoc Wireless Networks Research, Artificial intelligence, :Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors [Àrees temàtiques de la UPC], Computer Networks and Communications, Geometry, Metaheuristic, Heuristic, Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors, Cooperative Diversity in Wireless Networks, Generalized assignment problem, Cell assignment, FOS: Mathematics, Heuristics, Network Architecture, Optimization problem, Resource allocation, Content-Centric Networking for Information Delivery, Comunicació sense fil, Computer network, Mathematical optimization, Cellular networks, Computer science, Wireless communication systems, Sistemes de, Algorithm, Operating system, Energy efficiency, Comunicació sense fil, Sistemes de, Computer Science, Physical Sciences, Assignment problem, Heterogeneous networks, Reduction (mathematics), Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 259 download downloads 417 - 259views417downloads
Data source Views Downloads UCrea 120 67 UPCommons. Portal del coneixement obert de la UPC 139 350


