
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plant responses to a phytomanaged urban technosol contaminated by trace elements and polycyclic aromatic hydrocarbons

pmid: 26174982
Medicago sativa was cultivated at a former harbor facility near Bordeaux (France) to phytomanage a soil contaminated by trace elements (TE) and polycyclic aromatic hydrocarbons (PAH). In parallel, a biotest with Phaseolus vulgaris was carried out on potted soils from 18 sub-sites to assess their phytotoxicity. Total soil TE and PAH concentrations, TE concentrations in the soil pore water, the foliar ionome of M. sativa (at the end of the first growth season) and of Populus nigra growing in situ, the root and shoot biomass and the foliar ionome of P. vulgaris were determined. Despite high total soil TE, soluble TE concentrations were generally low, mainly due to alkaline soil pH (7.8-8.6). Shoot dry weight (DW) yield and foliar ionome of P. vulgaris did not reflect the soil contamination, but its root DW yield decreased at highest soil TE and/or PAH concentrations. Foliar ionomes of M. sativa and P. nigra growing in situ were generally similar to the ones at uncontaminated sites. M. sativa contributed to bioavailable TE stripping by shoot removal (in g ha(-1) harvest(-1)): As 0.9, Cd 0.3, Cr 0.4, Cu 16.1, Ni 2.6, Pb 4, and Zn 134. After 1 year, 72 plant species were identified in the plant community across three subsets: (I) plant community developed on bare soil sowed with M. sativa; (II) plant community developed in unharvested plots dominated by grasses; and (III) plant community developed on unsowed bare soil. The shoot DW yield (in mg ha(-1) harvest(-1)) varied from 1.1 (subset I) to 6.9 (subset II). For subset III, the specific richness was the lowest in plots with the highest phytotoxicity for P. vulgaris.
570, [SDV]Life Sciences [q-bio], plant community, ecological restoration, medicago sativa, phytoremediation, Plant Roots, Soil, Soil Pollutants, Biomass, Polycyclic Aromatic Hydrocarbons, 580, Phaseolus, Urbanization, Trace Elements, [SDV] Life Sciences [q-bio], gentle remediation option, Biodegradation, Environmental, Populus, France, Seasons, Plant Shoots, Environmental Monitoring, Medicago sativa
570, [SDV]Life Sciences [q-bio], plant community, ecological restoration, medicago sativa, phytoremediation, Plant Roots, Soil, Soil Pollutants, Biomass, Polycyclic Aromatic Hydrocarbons, 580, Phaseolus, Urbanization, Trace Elements, [SDV] Life Sciences [q-bio], gentle remediation option, Biodegradation, Environmental, Populus, France, Seasons, Plant Shoots, Environmental Monitoring, Medicago sativa
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
