Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combining hydrogen peroxide addition with sunlight regulation to control algal blooms

Authors: Liangliang Guo; Lirong Song; Licheng Huang; Qichao Zhou; Lin Li;

Combining hydrogen peroxide addition with sunlight regulation to control algal blooms

Abstract

The concentration, light conditions during treatment, and the number of hydrogen peroxide (H2O2) additions as well as the H2O2 treatment combined with subsequent shading to control algal blooms were studied in the field (Lake Dianchi, China). The cyanobacterial stress and injury due to H2O2 were dose dependent, and the control effectiveness and degradation of H2O2 were better and faster under full light than under shading. However, H2O2 was only able to control a bloom for a short time, so it may have promoted the recovery of algae and allowed the biomass to rebound due to the growth of eukaryotic algae. A second addition of H2O2 at the same dose had no obvious effect on algal control in the short term, suggesting that a higher concentration or a delayed addition should be considered, but these alternative strategies are not recommended so that the integrity of the aquatic ecosystem is maintained and algal growth is not promoted. Moreover, shading (85%) after H2O2 addition significantly reduced the algal biomass during the enclosure test, no restoration was observed for nearly a month, and the proportion of eukaryotic algae declined. It can be inferred that algal blooms can be controlled by applying a high degree of shading after treatment with H2O2.

Keywords

China, Hydrogen Peroxide, Eutrophication, Models, Theoretical, Cyanobacteria, Lakes, Phytoplankton, Sunlight, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%