Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Insight into elemental mercury (Hg0) removal from flue gas using UV/H2O2 advanced oxidation processes

Authors: Changsong Zhou; Zijian Song; Hongmin Yang; Hao Wu; Ben Wang; Jie Yu; Lushi Sun;

Insight into elemental mercury (Hg0) removal from flue gas using UV/H2O2 advanced oxidation processes

Abstract

Elemental mercury (Hg0) emitted from coal-fired power plants and municipal solid waste (MSW) incinerators has caused great harm to the environment and human beings. The strong oxidized •OH radicals produced by UV/H2O2 advanced oxidation processes were studied to investigate the performance of Hg0 removal from simulated flue gases. The results showed that when H2O2 concentration was 1.0 mol/L and the solution pH value was 4.1, the UV/H2O2 system had the highest Hg0 removal efficiency. The optimal reaction temperature was approximately 50 °C and Hg0 removal was inhibited when the temperature was higher or lower. The yield of •OH radicals during UV/H2O2 reaction was studied by electron paramagnetic resonance (EPR) analysis. UV radiation was the determining factor to remove Hg0 in UV/H2O2 system due to •OH generation during H2O2 decomposition. SO2 had little influence on Hg0 removal whereas NO had an inhibitory effect on Hg0 removal. The detailed findings for Hg0 removal reactions over UV/H2O2 make it an attractive method for mercury control from flue gases.

Related Organizations
Keywords

Air Pollutants, Ultraviolet Rays, Electron Spin Resonance Spectroscopy, Temperature, Equipment Design, Hydrogen Peroxide, Incineration, Mercury, Solid Waste, Coal, Gases, Oxidation-Reduction, Power Plants

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%