Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-edible vegetable oil–based feedstocks capable of bio-lubricant production for automotive sector applications—a review

Authors: Abhishek Sharma; Amneesh Singla; Yashvir Singh;

Non-edible vegetable oil–based feedstocks capable of bio-lubricant production for automotive sector applications—a review

Abstract

Fossil fuel resource is on the draining stage which leads to an increment in the cost of the petroleum products. Nowadays, research is focused on the development of environment-friendly lubricants which are derivatives of renewable sources. Bio-lubricants based on non-edible oil sources are environmentally friendly because they are non-hazardous and biodegradable and no emission of toxic gases were detected when they are used. This study involves the characterizations and advantages, as well as utilization of inedible plant oil-driven bio-lubricants as an alternative for tribological applications. This report also presents the status of the global lubricant market as well as the potential outlook of the bio-lubricants for their future usage. Non-edible plant oil-driven bio-lubricants bear high viscosity, high lubricity, and high viscosity index which can enhance the equipment service life and deserve the ability to carry the high load and results in a minimum amount of metal traces during combustion while applied to engines. Beside their advantages, some of the disadvantages are also there which can be addressed by the employment of certain additives available according to the applications. The detailed study about the different additives utilized during their use in the internal combustion engine is also described in detail during this study. This study provides a detailed description of the possibilities associated with bio-lubricant based on non-edible oil feedstocks to the automotive sector applications.

Keywords

Viscosity, Corrosion, Motor Vehicles, Biodegradation, Environmental, Metals, Plant Oils, Biotechnology, Lubricants

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 1%
Top 10%
Top 1%