Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative evaluation of biochemical methane potential of various types of Ugandan agricultural biomass following soaking aqueous ammonia pretreatment

Authors: Abura Tobby Oliwit; Roent Dune A. Cayetano; Gopalakrishnan Kumar; Jun Seok Kim; Sang-Hyoun Kim;

Comparative evaluation of biochemical methane potential of various types of Ugandan agricultural biomass following soaking aqueous ammonia pretreatment

Abstract

The feasibility of pretreatment involving soaking in aqueous ammonia (SAA) for the anaerobic digestion (AD) of eight different types of agricultural biomass of Ugandan origin was investigated. Moderate pretreatment temperatures of 60 and 90 °C were employed, and the NH3 concentration, solid-to-liquid ratio, and pretreatment time were fixed at 15.0% (w/w), 1:6, and 6 h, respectively. The delignification efficiencies of the SAA pretreatment ranged from 51.1 to 76.6%, and the maximum value was observed for maize bran pretreated at 90 °C. Biochemical methane potential experiments proved that the breaking of the complex bonds of lignin made fermentable sugars easily accessible to microorganisms. In all cases, the SAA pretreatment enhanced the methane potential of the eight types of Ugandan biomass compared with its untreated counterparts. The pretreated maize bran exhibited the highest methane yield of 291.5 mL CH4/g COD, which is 83.1% of the theoretical conversion. SAA followed by AD is useful for employing Ugandan agricultural biomass as a renewable energy source.

Related Organizations
Keywords

Agriculture, Lignin, Ammonia, Biofuels, Anaerobiosis, Biomass, Methane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%