Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
OpenMETU
Article . 2021
License: CC BY NC ND
Data sources: OpenMETU
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing the effects of wind farms on soil organic carbon

Authors: Ozge Isik Pekkan; Muzeyyen Anil Senyel Kurkcuoglu; Saye Nihan Cabuk; Talha Aksoy; Burcu Yilmazel; Tuncay Kucukpehlivan; Ahmet Dabanli; +2 Authors

Assessing the effects of wind farms on soil organic carbon

Abstract

Wind energy is considered one of the cleanest and most sustainable resources among renewable energy sources. However, several negative environmental impacts can be observed, unless suitable sites are selected for the establishment of wind farms. The aim of this study is to determine the change in the soil organic carbon (SOC) stock resulting from land cover changes that were caused by wind farm establishments in the Karaburun peninsula. Within the scope of the study, remote sensing and geographic information system technologies were utilized. Maximum likelihood algorithm, one of the supervised classification techniques, was used to classify the land cover, and Normalized Difference Vegetation Index (NDVI) analyses were performed to determine land cover changes. The findings were correlated with the "Turkey Soil Organic Carbon Project" data. As a result, depending on the establishment of wind farms in the Karaburun Peninsula, a total decrease of 18,330.57 tons of SOC in the study area between 2000 and 2019 was determined. It should be taken into consideration that besides many other negative effects (effects on human health, effects on the ecosystem, effects on animals, etc.), land cover changes caused by wind farms may indirectly cause important problems such as climate change. Recently, this situation shows that there is an important dilemma in terms of current implementations. Wind farms are the most invested renewable energy sources and alternative energy supply to fossil fuels in terms of preventing climate change. However, the results of this study have reviewed that lack of proper approaches and methods to establish wind farms may result in various problems such as physical, chemical, and biological degradations and an increase in the amount of atmospheric carbon. Consequently, the investments in renewable energy sources should be comprehensively reevaluated in terms of current technologies, quality in the scope of environmental impact assessment and strategic environmental assessment processes, legal regulations and national policies, long-term environmental costs, etc.

Country
Turkey
Keywords

Energy-Generating Resources, Turkey, Health, Toxicology and Mutagenesis, General Medicine, Wind, Pollution, Carbon, Soil, Environmental Chemistry, Animals, Humans, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%