Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2013
Data sources: HAL INRAE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agritrop
Article . 2013
Data sources: Agritrop
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Life Cycle Assessment
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using a crop model to account for the effects of local factors on the LCA of sugar beet ethanol in Picardy region, France

Authors: Bessou, Cécile; Lehuger, Simon; Gabrielle, Benoit; Mary, Bruno;

Using a crop model to account for the effects of local factors on the LCA of sugar beet ethanol in Picardy region, France

Abstract

The results of published Life Cycle Assessments (LCAs) of biofuels are characterized by a large variability, arising from the diversity of both biofuel chains and the methodologies used to estimate inventory data. Here, we suggest that the best option to maximize the accuracy of biofuel LCA is to produce local results taking into account the local soil, climatic and agricultural management factors. We focused on a case study involving the production of first-generation ethanol from sugar beet in the Picardy region in Northern France. To account for local factors, we first defined three climatic patterns according to rainfall from a 20-year series of weather data. We subsequently defined two crop rotations with sugar beet as a break crop, corresponding to current practice and an optimized management scenario, respectively. The six combinations of climate types and rotations were run with the process-based model CERES-EGC to estimate crop yields and environmental emissions. We completed the data inventory and compiled the impact assessments using Simapro v.7.1 and Ecoinvent database v2.0. Overall, sugar beet ethanol had lower impacts than gasoline for the abiotic depletion, global warming, ozone layer depletion and photochemical oxidation categories. In particular, it emitted between 28 % and 42 % less greenhouse gases than gasoline. Conversely, sugar beet ethanol had higher impacts than gasoline for acidification and eutrophication due to losses of reactive nitrogen in the arable field. Thus, LCA results were highly sensitive to changes in local conditions and management factors. As a result, an average impact figures for a given biofuel chain at regional or national scales may only be indicative within a large uncertainty band. Although the crop model made it possible to take local factors into account in the life-cycle inventory, best management practices that achieved high yields while reducing environmental impacts could not be identified. Further modelling developments are necessary to better account for the effects of management practices, in particular regarding the benefits of fertiliser incorporation into the topsoil in terms of nitrogen losses abatement. Supplementary data and modelling developments also are needed to better estimate the emissions of pesticides and heavy metals in the field.

Country
France
Keywords

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences, 550, P06 - Sources d'énergie renouvelable, Betterave sucrière, F01 - Culture des plantes, Zone climatique, [SDV.SA] Life Sciences [q-bio]/Agricultural sciences, Sugar beet, N2O, Éthanol, Agricultural practices, Greenhouse gases, Rendement des cultures, Process-based model, P01 - Conservation de la nature et ressources foncières, CERES-EGC, Beta vulgaris, Gaz à effet de serre, Analyse du cycle de vie, 330, croissance et développement [F62 - Physiologie végétale], Biocarburant, SA] Life Sciences/Agricultural sciences [[SDV], Biofuel, Production énergétique, Local LCA, NOE2, Ethanol, U10 - Méthodes mathématiques et statistiques, Modélisation des cultures, SA] Sciences du Vivant/Sciences agricoles [[SDV], Impact sur l'environnement, [SDV.SA] Life Sciences/Agricultural sciences, Dioxyde d'azote, Pétrole, agrovoc: agrovoc:c_10677, agrovoc: agrovoc:c_34841, agrovoc: agrovoc:c_5194, agrovoc: agrovoc:c_24836, agrovoc: agrovoc:c_7499, agrovoc: agrovoc:c_9000105, agrovoc: agrovoc:c_890, agrovoc: agrovoc:c_27465, agrovoc: agrovoc:c_9000024, agrovoc: agrovoc:c_1669, agrovoc: agrovoc:c_5747, agrovoc: agrovoc:c_24420, agrovoc: agrovoc:c_5850, agrovoc: agrovoc:c_10176

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Green
bronze