Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CIRAD: HAL (Agricult...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agritrop
Article . 2018
Data sources: Agritrop
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Life Cycle Assessment
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Environmental assessment of the Peruvian industrial hake fishery with LCA

Authors: Angel Avadí; René Adrien; Víctor Aramayo; Pierre Fréon;

Environmental assessment of the Peruvian industrial hake fishery with LCA

Abstract

The Peruvian hake (Merluccius gayi peruanus) stock has been in a delicate state in the last decades due to overexploitation combined with adverse climatic events. The stock is showing certain signs of recovery since 2012. This work analyses the environmental impacts of current fleet operations and its likely trend. The fleet was divided into coherent segments, per holding capacity and engine power. The validity of both segmentations, as well as the presence of an effect of economies of scale driving fuel use intensity (FUI), was tested. Life cycle assessment was used to calculate environmental impacts, per individual sampled vessel and per segment, complemented with indicators of energy efficiency and biotic resource depletion. The fleet is highly fuel-efficient (120 kg fuel per tonne fish) when compared with other reported values, despite a large overcapacity that increases the impact of the construction and maintenance phases. Significant inter-annual FUI variations were observed (80.0 kg t−1 in 2008 to 210.3 kg t−1 in 2006), but no clear trend. Neither significant differences in FUI among fleet segments nor a clear effect of economies of scale were found (but FUI analysis was based on a small sample of 32 values for nine vessels, two of which had data for a single year). Only the largest vessels, featuring 242 m3 holding capacity and 850 hp engine power, were found to have lower FUI than any of the other vessels, but no statistical test could be applied to validate this difference. Differences in environmental impacts of individual vessels are mostly dominated by their relative FUI. Fuel use and, to a lower extent, maintenance are the main sources of environmental impacts. The most contributing impacts to ReCiPe single score are climate change, human toxicity and fossil depletion. The fishery’s impacts on the biotic natural resource were orders of magnitude higher than many other global hake stocks, due to overexploitation. The environmental impacts of the national hake fleet are relatively low during the study period, despite an overcapacity of the fleet. With the perspective of expanding its operations and obtaining better yields on the eventuality that the stock fully recovers, these impacts should decrease. More research based on additional FUI data is necessary to effectively compare the performance of these vessels with larger ones (featuring >180 m3 and >500 hp, of which nine existed in 2016) before possibly recommending their preferential use.

Country
France
Keywords

life-cycle assessment, [SDE.MCG]Environmental Sciences/Global Changes, Trawling, 333, Life cycle assessment, [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems, stock, anchoveta fleet, impact assessment, considérations générales [M01 - Pêche et aquaculture], Fuel use intensity, sustainability, indicators, products, biotic resource use, efficiency, [SDV.SA.STP]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of fishery, systems, Fleet management, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, Biotic resource depletion, agrovoc: agrovoc:c_5725

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Average
Green
bronze