
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy, exergy, and environmental analysis of meeting cooling demand of a ship with waste heat recovery

Waste heat recovery for meeting the air conditioning demand of a ship is reported. An absorption refrigeration system is proposed. Water-LiBr is used as the working pairs for this purpose. A steady-state energy, exergy, and environmental analysis is done to compare the proposed system with the conventional system. Exhaust gases of auxiliary engines are used to vaporize high-pressure water. High-pressure steam is employed as a heat source for the generator of the absorption system. The results show that exhaust gases of the auxiliary engine as a permanent heat source suffice for the generator of the absorption system. For tropical conditions, the required power for the absorption system is much lower than that for the conventional system. $$ {\dot{\Big(W}}_{\mathrm{demand}} $$ for the absorption system is 0.02, while it is 88.28 for the conventional system). The second law of thermodynamics shows a 31% lower total irreversibility in the proposed system versus the conventional system. The use of the absorption system causes a USD 45,078 saving in the yearly penalty cost of CO2 emission.
- Islamic Azad University of Falavarjan Iran (Islamic Republic of)
- Islamic Azad University Central Tehran Branch Iran (Islamic Republic of)
- Islamic Azad University Central Tehran Branch Iran (Islamic Republic of)
- Islamic Azad University of Falavarjan Iran (Islamic Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
