Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Efficiencyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Efficiency
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy, exergy, and environmental analysis of meeting cooling demand of a ship with waste heat recovery

Authors: Yadollah Aghdoud Chaboki; Ahmad Khoshgard; Gholamreza Salehi; Farivar Fazelpour;

Energy, exergy, and environmental analysis of meeting cooling demand of a ship with waste heat recovery

Abstract

Waste heat recovery for meeting the air conditioning demand of a ship is reported. An absorption refrigeration system is proposed. Water-LiBr is used as the working pairs for this purpose. A steady-state energy, exergy, and environmental analysis is done to compare the proposed system with the conventional system. Exhaust gases of auxiliary engines are used to vaporize high-pressure water. High-pressure steam is employed as a heat source for the generator of the absorption system. The results show that exhaust gases of the auxiliary engine as a permanent heat source suffice for the generator of the absorption system. For tropical conditions, the required power for the absorption system is much lower than that for the conventional system. $$ {\dot{\Big(W}}_{\mathrm{demand}} $$ for the absorption system is 0.02, while it is 88.28 for the conventional system). The second law of thermodynamics shows a 31% lower total irreversibility in the proposed system versus the conventional system. The use of the absorption system causes a USD 45,078 saving in the yearly penalty cost of CO2 emission.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average