Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Review and Model-Based Analysis of Factors Influencing Soil Carbon Sequestration Beneath Switchgrass (Panicum virgatum)

Authors: Charles T. Garten;

Review and Model-Based Analysis of Factors Influencing Soil Carbon Sequestration Beneath Switchgrass (Panicum virgatum)

Abstract

A multi-compartment model was developed to summarize existing data and predict soil carbon sequestration beneath switchgrass (Panicum virgatum) in the southeastern USA. Soil carbon sequestration is an important part of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was undertaken for the purpose of model parameterization. A sensitivity analysis of the model indicated that predictions of soil carbon sequestration were affected most by changes in aboveground biomass production, the ratio of belowground-to-aboveground biomass production, and mean annual temperature. Simulations indicated that the annual rate of soil carbon sequestration approached steady state after a decade of switchgrass growth while predicted mineral soil carbon stocks were still increasing. A model-based experiment was performed to predict rates of soil carbon sequestration at different levels of nitrogen fertilization and initial soil carbon stocks (to a 30-cm depth). At a mean annual temperature of 13°C, the predicted rate of soil carbon sequestration varied from −28 to 114 g C m−2 year−1 (after 30 years) and was greater than zero in 11 of 12 simulations that varied initial surface soil carbon stocks from 1 to 5 kg C m−2 and nitrogen fertilization from 0 to 18 g N m−2 year−1. The modeling indicated that more research is needed on the process of biomass allocation and on nitrogen loss from mature plantations, respectively, to improve our understanding of carbon and nitrogen dynamics in switchgrass agriculture.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average