Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Significant Contribution of Energy Crops to Heat and Electricity Needs in Great Britain to 2050

Authors: Jun Zhong; Gail Taylor; Pete Smith; Andrew A. Lovett; Shifeng Wang; Shifeng Wang; Sicong Wang; +2 Authors

Significant Contribution of Energy Crops to Heat and Electricity Needs in Great Britain to 2050

Abstract

The paper estimates the potential contribution of Miscanthus × giganteus (Miscanthus) and short rotation coppice (SRC; in Great Britain often willow and poplar species, e.g. Salix. viminalis L. x S. viminalis var Joruun) to the heat and electricity needs in Great Britain to 2050 under climate change, using a model system which is composed of a partial equilibrium model and two process-based terrestrial biogeochemistry models. If the whole available area of land suitable for Miscanthus and SRC of 8 Mha is considered, results show that the contribution of Miscanthus and SRC to the heat and electricity supply would be significant. Under the projected climate and an imposed energy policy to 2050, the potential contribution would range from 139, 291 GWh to 230, 605 GWh for heat and from 112, 481 GWh to 127, 868 GWh for electricity by 2050. This would provide over 60 % of total heat and electricity needs in Great Britain. Using realistic implementation scenarios on just 0.4 Mha of land, Miscanthus and SRC could still contribute more than 5 % of heat and electricity needs in Great Britain. We conclude that Miscanthus and SRC have the potential to form part of a diverse renewable energy portfolio for Great Britain. In addition to climate and energy policy, the contribution of Miscanthus and SRC to heat and electricity will be impacted by the efficiency of combined heat and power (CHP) and alternative energy crops, and the area of land eventually used for dedicated bioenergy crops.

Country
United Kingdom
Related Organizations
Keywords

660, 630, 333

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average