Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L.

Authors: Maria Paula Amaro de Castilho Duarte; Bruno Barbosa; Bruno Barbosa; Ana Luisa Fernando; Jorge Costa; S. Boléo; Salvatore Luciano Cosentino; +2 Authors

Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L.

Abstract

Giant reed (Arundo donax) and Miscanthus spp. were tested to evaluate their tolerance and phytoremediation capacity in soils contaminated with heavy metals. Giant reed was tested under 450 and 900 mg Zn kg−1, 300 and 600 mg Cr kg−1, and 450 and 900 mg Pb kg−1 contaminated soils, while the Miscanthus genotypes M. × giganteus, M. sinensis, and M. floridulus were tested on 450 and 900 mg Zn kg−1 contaminated soils, along 2 years. Giant reed biomass production was negatively affected by the contamination; however, yield reduction was only significant under 600 mg Cr kg−1 soil. Zn contamination reduced significantly M. × giganteus production but not M. sinensis or M. floridulus yields. Yet, M. × giganteus was also the most productive. Both grasses can be considered as indicators, once metal concentration in the biomass reflected soil metal concentration. Regarding giant reed experiments, higher modified bioconcentration factors (mBCFs, 0.3–0.6) and translocation factors (TFs, 1.0–1.1) were obtained for Zn, in the contaminated soils, followed by Cr (mBCFs, 0.2–0.4, belowground organs; TFs, 0.2–0.4) and Pb (mBCFs, 0.06–0.07, belowground organs; TFs, 0.2–0.4). Metal accumulation also followed the same pattern Zn > Cr > Pb. Miscanthus genotypes showed different phytoremediation potential facing similar soil conditions. mBCFs (0.3–0.9) and TFs (0.7–1.5) were similar among species, but highest zinc accumulation was observed with M. × giganteus due to the higher biomass production. Giant reed and M. × giganteus can be considered as interesting candidates for Zn phytoextraction, favored by the metal accumulation observed and the high biomass produced. A. donax and Miscanthus genotypes showed to be well suited for phytostabilization of heavy metal contamination as these grasses prevented the leaching of heavy metal and groundwater contamination.

Country
Italy
Keywords

Arundo donax; Miscanthus genotypes; Heavy metals; Contaminated soils; Phytoremediation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    163
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
163
Top 1%
Top 10%
Top 1%