Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2019
Data sources: HAL INRAE
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methane Production Variability According to Miscanthus Genotype and Alkaline Pretreatments at High Solid Content

Authors: Thomas, Hélène Laurence; Arnoult, Stéphanie; Brancourt-Hulmel, Maryse; Carrère, Hélène;

Methane Production Variability According to Miscanthus Genotype and Alkaline Pretreatments at High Solid Content

Abstract

In the context of increasing needs of lignocellulosic biomass for emerging biorefinery, miscanthus is expected to represent a resource for energy production. Regarding biogas production, its potential may be improved either by genotype selection or pretreatment. Eight different miscanthus genotypes belonging to Miscanthus × giganteus (FLO, GID and H8), M. sacchariflorus (GOL, MAL, AUG, H6) and M. sinensis (H5) species were first compared for biomass composition and potential methane. In a second time, alkali pretreatments (NaOH 10 g 100 gTS−1, CaO 10 g 100 gTS−1) were applied at ambient temperature and high solid content, in different conditions of duration and particle size on the genotype FLO presenting the lowest methane potential. The methane potential varied between miscanthus genotypes with values ranging from 166 ± 10 to 202 ± 7 NmLCH4 gVS−1. All of the studied pretreatments increased the methane production up to 55% and reduced Klason lignin and holocellulose contents up to 37%. From this study, NaOH was more efficient than CaO with an increase of the methane production between 24 and 55% and between 19 and 30%, respectively.

Country
France
Keywords

anaerobic digestion, [SDE] Environmental Sciences, high solid content, [SDV]Life Sciences [q-bio], 630, [SDV] Life Sciences [q-bio], genotypes, [SDE]Environmental Sciences, alkaline pretreatments, [SDV.BV]Life Sciences [q-bio]/Vegetal Biology, miscanthus, [SDV.BV] Life Sciences [q-bio]/Vegetal Biology, lignocellulosic biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%