Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agritrop
Article . 2019
Data sources: Agritrop
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2019
Data sources: HAL INRAE
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of N Fertilizer to Sugarcane Mulches: Consequences for the Dynamics of Mulch Decomposition and CO2 and N2O Fluxes

Authors: Kyulavski, Vladislav; Recous, Sylvie; Garnier, Patricia; Paillat, Jean-Marie; Thuries, Laurent;

Application of N Fertilizer to Sugarcane Mulches: Consequences for the Dynamics of Mulch Decomposition and CO2 and N2O Fluxes

Abstract

Using organic fertilizers on sugarcane mulches is a potentially interesting substitute for mineral fertilization in terms of economic and environmental impacts. However, no general agreement exists regarding the short-term effect of combining mulching and organic fertilization on greenhouse gas (GHG) emissions. Therefore, we studied different mixtures in the field by combining two amounts of sugarcane mulch (5 and 10 Mg ha−1) with different N fertilizers (urea, pig slurry, and digested sewage sludge). We measured CO2 and N2O emissions shortly after application of the mixtures (0–14 days) and the mulch decomposition dynamics from 0 to 120 days after application. We hypothesized that the relative amount of N to C modifies the decomposition dynamics and GHG fluxes. The emitted N2O-N and CO2-C were measured using static chambers. Mulch-C decomposition was measured using litterbags. Our results showed that the proportion of mulch-C remaining on the soil on day 120 was not altered by either the type of N fertilizer or the mulch amount. On a shorter time scale (0–49 days), the different N treatments affected the mulch-C and mulch-N losses and the C:N ratios, indicating a transient interaction between the dynamics of the mulch and the added N. The intensity of N2O-N emission was ranked as pig slurry > urea > digested sewage sludge, underscoring the effect of the physical form of N fertilizer. This work highlights the need to jointly study carbon and nitrogen dynamics and consider both soil carbon and gas emissions to assess the GHG balances of sugarcane farming practices.

Country
France
Keywords

P33 - Chimie et physique du sol, Nitrogen, [SDV]Life Sciences [q-bio], 630, Sewage sludge, Organic waste, Engrais organique, T01 - Pollution, GHG emissions, [SDV] Life Sciences [q-bio], Sugarcane trash, Canne à sucre, Gaz à effet de serre, Pig slurry, F04 - Fertilisation, agrovoc: agrovoc:c_34841, agrovoc: agrovoc:c_6543, agrovoc: agrovoc:c_7501, agrovoc: agrovoc:c_4592

Powered by OpenAIRE graph
Found an issue? Give us feedback