Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nitrate-Induced Carbohydrate Accumulation in Chlorella sorokiniana and its Potential for Ethanol Production

Authors: Anu Kalia; Monica Sachdeva Taggar; Manpreet Singh; Amanpreet Kaur;

Nitrate-Induced Carbohydrate Accumulation in Chlorella sorokiniana and its Potential for Ethanol Production

Abstract

Microalgae are considered promising feedstocks for biofuel and bio-product generation. The algal carbohydrates can be hydrolyzed into sugars before their fermentation into ethanol. In this study, nutrient limitation strategy was employed to evaluate the biochemical composition of Chlorella sorokiniana. Limiting nitrate (1.0 g/L KNO3) in the culture medium increased the total carbohydrate and starch content of microalga by 50.28 and 34.06%, respectively. However, this significantly lowered their yield due to low microalgal biomass production. Cultivation of C. sorokiniana cells with 4.0 g/L KNO3 as nitrogen source for 8 days was optimum for bioethanol production as the highest total carbohydrate yield of 422.44 mg/L was obtained under these conditions. Nitrate limitation (1.0 g/L KNO3) favored the increased production of high-value carotenoids in C. sorokiniana that could further contribute to improving the economics of the bioethanol production process. Feasibility studies for ethanol production from C. sorokiniana revealed that a maximum of 13.86 mg/mL of reducing sugars was extracted in the hydrolysate by treating the microalgal biomass with 2.8% sulfuric acid at 121 °C for 30 min. Fermentation of acid hydrolysate produced ethanol at a concentration of 2.91 mg/mL in 96 h with 41.16% of theoretical yield.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
bronze