
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Modeling a solar-powered double bed novel composite adsorbent (silica activated carbon/CaCl2)-water adsorption chiller
During the past few decades, the growing demand for air conditioning has caused a significant increase in demand for primary energy resources. Adsorption cooling system is one of the technologies which could be powered by renewable energy. This study aims to improve the performance of a solar-powered adsorption chiller by applying a novel composite adsorbent, a mixture of activated carbon, silica gel and calcium chloride. Modeling is established to investigate the cooling performance of a composite adsorbent based adsorption chiller driven by flat-type solar collectors with three different configurations of glaze: (1) single glazed cover; (2) double glazed cover and (3) transparent insulation material (TIM) cover. The simulation results show that the coefficient of performance (COP) and the specific cooling power (SCP) of the adsorption chiller depend hugely on the solar collector temperature. It is found that a double glazed cover shows the best cooling performance and 30 m2 is the most optimized solar collector area. Two to three hours of pre-heating time is required to initiate the desorption process of the adsorber in a day of operation. This newly developed silica activated carbon/CaCl2 composite material as adsorbent used in the adsorption chiller could achieve a high mean COPsc of 0.48. Its satisfactory performance suggests that this novel composite material has a potential to be used in the adsorption chiller system even if it is powered by unstable solar energy.
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Hong Kong Polytechnic University China (People's Republic of)
Solar energy, Modeling, Adsorption cooling system, Simulation
Solar energy, Modeling, Adsorption cooling system, Simulation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
