
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dynamic structural health monitoring of a model wind turbine tower using distributed acoustic sensing (DAS)

AbstractMaintenance of wind turbine towers is currently a manual process that requires visual inspection and bolt tightening yearly. This process is costly to energy companies and its necessity is not well-defined. In this study, two Rayleigh-based distributed fiber optic sensing technologies are evaluated and compared for their ability to monitor the dynamic structural behavior of a model wind turbine tower subject to free and forced vibration. They are further tested for their ability to detect structural phenomena associated with loose bolts and material damage within the tower. The two technologies examined are optical frequency domain reflectometry (OFDR) and phase-based optical time domain reflectometry ($$\phi$$ ϕ -OTDR), which is a technology used in distributed acoustic sensing (DAS). OFDR is a tested and proven strain measurement technology commonly used for structural health monitoring but can only make strain measurements over short distances (10 s of meters). OFDR was used to validate the measurements made with $$\phi$$ ϕ -OTDR which can measure over much longer distances (several kilometers). Due to its sensing distance capability, $$\phi$$ ϕ -OTDR is a promising technology for monitoring many wind turbines networked together with a single fiber optic cable. This study presents a first-of-its-kind use of $$\phi$$ ϕ -OTDR for structural health monitoring to demonstrate its capabilities.
- National Institute for Nuclear Physics Italy
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- University of California, Berkeley United States
- Hong Kong Polytechnic University China (People's Republic of)
- Enel (Italy) Italy
690, Mechatronics and Robotics, Structural health monitoring, 621, 624, Control Engineering, Energy Research, Civil Engineering, Dynamic strain sensing, Engineering, Affordable and Clean Energy, Distributed acoustic sensing, Loose bolt detection, EGD-Wind, Distributed fiber optic sensing, Civil engineering, Safety, Risk, Reliability and Quality, Wind turbine, Civil and Structural Engineering
690, Mechatronics and Robotics, Structural health monitoring, 621, 624, Control Engineering, Energy Research, Civil Engineering, Dynamic strain sensing, Engineering, Affordable and Clean Energy, Distributed acoustic sensing, Loose bolt detection, EGD-Wind, Distributed fiber optic sensing, Civil engineering, Safety, Risk, Reliability and Quality, Wind turbine, Civil and Structural Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
