
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Scenario-based analysis and probability assessment of sub-synchronous oscillation caused by wind farms with direct-driven wind generators

Abstract Recently, explanations of the sub-synchronous oscillation (SSO) caused by wind farms based on direct-driven wind generators (DDWGs) have been published in the literatures, in which the controller parameters of DDWGs and the system equivalent parameters play an important role. However, more than one set of parameters can cause weakly damped sub-synchronous modes. The most vulnerable and highly possible scenario is still unknown. To find scenarios that have potential oscillation risks, this paper proposes a small disturbance model of wind farms with DDWGs connected to the grid using a state-space modeling technique. Taguchi’s orthogonal array testing is introduced to generate different scenarios. Multiple scenarios with different parameter settings that may lead to SSOs are found. A probabilistic analysis method based on the Gaussian mixture model is employed to evaluate the consistency of these scenarios with the actual accidents. Electromagnetic transient simulations are performed to verify the findings.
- Tsinghua University China (People's Republic of)
- State Key Laboratory of Power System and Generation Equipment China (People's Republic of)
- Electric Power Research Institute United States
- State Key Laboratory of Power System and Generation Equipment China (People's Republic of)
- Electric Power Research Institute United States
TK1001-1841, Direct-driven wind generator, TJ807-830, Probabilistic assessment, Sub-synchronous oscillation, Renewable energy sources, Production of electric energy or power. Powerplants. Central stations, Randomness
TK1001-1841, Direct-driven wind generator, TJ807-830, Probabilistic assessment, Sub-synchronous oscillation, Renewable energy sources, Production of electric energy or power. Powerplants. Central stations, Randomness
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
