Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Sustainab...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Sustainable Metallurgy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxidative Dissolution of Cemented Tungsten Carbides in Molten Sodium Carbonate by Addition of Copper(I) Oxide as Oxidizing Agent for Tungsten Recycling

Authors: Kouji Yasuda; Kohei Suzuki; Ryotaro Uehata; Rika Hagiwara;

Oxidative Dissolution of Cemented Tungsten Carbides in Molten Sodium Carbonate by Addition of Copper(I) Oxide as Oxidizing Agent for Tungsten Recycling

Abstract

AbstractDue to the monopolized supply of tungsten resource, it is important to efficiently recycle tungsten scrap for use as a secondary resource. The recycling of tungsten from cemented carbide tools by the molten carbonate method was investigated using simulated hard and soft scrap (carbide tool tips and WC powder, respectively). The oxidative dissolution of tungsten was examined in molten Na2CO3 under Ar–O2–CO2 atmospheres at 1173 K. Based on the immersion potentials of Cu, W, Co, C, and WC–Co, Cu2O was suggested to work as an oxidizing agent for tungsten dissolution. The oxidative dissolution rate for carbide tool tips with 12.8 mol% Cu2O addition reached 57 mg h−1 for the reaction time of 2.5 h, equivalent to 0.32 mm h−1. The decrease in the dissolution rate after 2.5 h was attributed to the decrease in the Cu(I) ion concentration in the melt and the inhibition of ion diffusion by the deposited metallic Cu. No violent reaction leading to explosion was observed, even for the oxidative dissolution of fine WC powder with a large surface area. Thus, this method provides significant safety improvements compared to the molten nitrate method. Graphical Abstract

Country
Japan
Related Organizations
Keywords

Carbonate, Molten salt, Recycling, Hard tool tip, Tungsten carbide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid