Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Ecology and E...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Ecology and Environment
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the bioenergy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis

Authors: Md Sumon Reza; Shafi Noor Islam; Shammya Afroze; Muhammad S. Abu Bakar; Rahayu S. Sukri; Saidur Rahman; Abul K. Azad;

Evaluation of the bioenergy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis

Abstract

The use of lignocellulosic biomass in the production of bioenergy is escalating with time due to the increase in energy demand and ecological pollution. The purpose of this study is to examine the opportunities of biofuel production from Pennisetum purpureum which is an invasive perennial grass in Brunei Darussalam. The proximate analysis of the study showed that the proportions of moisture content (MC), volatile matter (VM), fixed carbon (FC), and ash content (AC) were 5.93%, 69.44%, 16.81%, and 7.82%, respectively. Moreover, the ratios of carbon (C), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O) provided by the ultimate analysis were 43.23%, 5.80%, 1.17%, 0.11%, and 41.76%, respectively. The low moisture content and the higher heating value (18.55 MJ/kg) marked this grass as a potential source of biomass. Fourier transform infrared spectroscopy revealed the strong bonds between O–H, C–H, C–O, C=O, and C=C in the biomass. The thermogravimetric and their derivative results depicted that the highest weight losses occurred at a temperature of 334 °C with a degradation rate of 6.56 °C/min for pyrolysis condition and at a temperature of 312 °C with a degradation rate of 7.66 °C/min in combustion conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 1%
Top 10%
Top 10%