Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Transitionsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Transitions
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Transitions
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno-economic assessment for energy transition from diesel-based to hybrid energy system-based off-grids in Saudi Arabia

Authors: Hassan M. H. Farh; Hassan M. H. Farh; Abdullrahman A. Al-Shamma'a; Abdullrahman A. Al-Shamma'a; Fahd A. Alturki;

Techno-economic assessment for energy transition from diesel-based to hybrid energy system-based off-grids in Saudi Arabia

Abstract

AbstractHybrid energy power plants are remarkable option for the electrification of isolated areas, which commonly fulfill their energy demand by means of diesel generators. An energy combination comprising also PV or wind systems would lead to a reduction of costs and is, therefore, being gradually esteemed. In this paper, an optimal sizing approach was established based on a long-term energy analysis, to study the techno-economic feasibility of different hybrid systems proposed to electrify an isolated area located in the north of Saudi Arabia under different fuel cost scenarios. For each fuel cost scenario, the hybrid system has been designed and optimized to get a maximum renewable penetration ratio at a low cost of energy. An optimization model based on genetic algorithm is developed to determine the optimum hybrid systems. Three different systems are studied, with different diesel price, to relatively analyze the different hybrid systems and the result reveals that PV/battery/diesel with zero LPSP is the most cost-effective system for the proposed remote area. Sensitivity analysis reveals that that the hybrid systems is the most economically choice even if the solar radiation decreases to half. It also found that irrespective of the wind speed, PV/battery/diesel system is the optimal choice if the wind speed is less than about 6.75 m/s. At solar radiation and wind speed less than 1500 W/m2, 5.6 m/s, respectively, diesel only system is cost effective. According to the present results, there is a good economic prospective to shift the diesel plants to hybrid systems, with cost reduction opportunities of around 41% of the cost of energy.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
gold