
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Identification and initial characterization of transforming growth factor-like mitogen(s) in human anterior pituitary

pmid: 3878712
Transforming growth factor (TGFs) are a family of peptide(s) defined by their ability to induce anchorage-independent growth of non-neoplastic indicator cells in soft agar. We found that acid-ethanol extracts of human anterior pituitary tissues were able to stimulate colony growth of normal rat kidney fibroblasts in soft agar. When subjected to gel-filtration on a column of Bio-Gel P-60 in 1 M acetic acid, the majority of TGF activity eluted in fractions corresponding to an apparent mol wt 15,000. The activity was heat- and acid-stable, but was inactivated by treatment with trypsin and dithiothreitol. Pituitary TGF-like materials did not compete with epidermal growth factor (EGF) for receptor binding and did not require EGF for colony-forming activity. Thus, human pituitary TGF was not like type alpha or type beta TGF.
- University of Tokyo Japan
Epidermal Growth Factor, Ethanol, DNA, Fibroblasts, Hydrogen-Ion Concentration, Binding, Competitive, Radioligand Assay, Pituitary Gland, Anterior, Transforming Growth Factors, Chromatography, Gel, Humans, Mitogens, Peptides, Cell Division, Cells, Cultured
Epidermal Growth Factor, Ethanol, DNA, Fibroblasts, Hydrogen-Ion Concentration, Binding, Competitive, Radioligand Assay, Pituitary Gland, Anterior, Transforming Growth Factors, Chromatography, Gel, Humans, Mitogens, Peptides, Cell Division, Cells, Cultured
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
