Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Utah State Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Soil Biology and Biochemistry
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils

Authors: Scheu, Stefan; Parkinson, Dennis;

Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils

Abstract

Changes in bacterial and fungal biomass C, bacterial and fungal biovolume, ergosterol content, basal respiration and metabolic quotient (qCO2) after air-drying, rewetting and incubation (6 h and 2, 10 and 40 days) of four soil layers (L, F, H, ah) of an aspen (Populus tremuloides Michx.) forest and the F/H layer of a pine (Pinus contorta Loud.) forest in the Canadian Rocky Mountains were studied. Bacterial and fungal biomass were determined by selective inhibition of substrate-induced respiration (SIR) by streptomycin and cycloheximide. Bacterial and fungal biovolume were determined by epifluorescence microscopy using acridine orange and calcofluor white M2R for staining of bacteria and fungi, respectively. SIR inhibition was optimized by testing a wide range of inhibitor concentrations and different substrates.In general, air-drying (20°C, 14 days) caused only slight reductions (< 10%) in microbial biomass (SIR) in each of the layers. The effect of air-drying on bacteria and fungi depended on the soil materials. In general, most of the measurements indicated little changes in bacterial and fungal populations after air-dried layers had been rewetted. Basal respiration was increased strongly in each of the rewetted layers and C metabolized during the burst in respiration may have originated from killed microorganisms in aspen L, F and H, but other C resources presumably were also made available by air-drying of aspen ah and pine F/H.During incubation of rewetted layers bacterial biomass and biovolume increased for 10 days in most of the layers, resulting in a decrease in the fungal-to-bacterial ratio. Then, between days 10 and 40 fungi became more dominant in most of the layers and the fungal-to-bacterial ratio increased.Each of the indices measured to determine changes in bacterial and fungal populations were correlated significantly. The correlation between SIR inhibition by cycloheximide and ergosterol content was particularly high (r2 = 0.83) and an overall mean of 11 mg ergosterol g− fungal biomass C was obtained, indicating that changes in fungal populations in forest layers can be monitored accurately by measuring ergosterol contents. The usefulness of each of the methods used to characterize changes in bacterial and fungal populations in soil is discussed.

Country
United States
Related Organizations
Keywords

Bioenergetics (Biochemistry and Molecular Biophysics), Spermatophyta, deciduous forests, eubacteria, Physiology, Basal Respiration, comparisons, dicots, soil flora, Rocky Mts, population dynamics, vascular plants, drying, Plantae, bacteria, microorganisms, soil analysis, Metabolic Quotient, Populus tremuloides (Salicaceae), wetting, ergosterol, Salicaceae: Dicotyledones, plants, air drying, pinus contorta, incubation, soil biology, Angiospermae, populus tremuloides, sample processing, spermatophytes, variation, angiosperms, organic compounds, coniferous forests, profiles, temperate soils, Canada, gymnosperms, Pinus contorta (Coniferopsida), Soil Science, Coniferopsida: Gymnospermae, Microbiology, soil, forest soils, Bacteria General Unspecified: Eubacteria, determination, chemical composition, carbohydrate metabolism, bacteria (Bacteria General Unspecified), Forest Sciences, 580, forests, Biochemistry and Molecular Biophysics, Bacteria, Fungi Unspecified: Fungi, biomass, carbon, vegetation types, alberta, Carbon, analytical methods, Metabolism, nonvascular plants, fungi (Fungi Unspecified), fungi, respiration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    150
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
150
Top 10%
Top 1%
Top 10%
bronze