Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Neuro-Psychopharmacology and Biological Psychiatry
Article . 1986 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Use of chromosomally mapped and identified mouse brain proteins for behavioral genetic analysis of alcoholism

Authors: John C. Crabbe; David Goldman;

Use of chromosomally mapped and identified mouse brain proteins for behavioral genetic analysis of alcoholism

Abstract

A logical first place to look in order to identify loci determining behavioral differences between inbred and certain outbred strains of mice is among the proteins expressed in brain. Fourteen mouse brain proteins have been demonstrated to be genetically variant, four of these have been chromosomally mapped and an additional twelve have been identified and can be simultaneously screened by two dimensional electrophoresis. Certain genetic differences in behavior relevant to alcohol consumption and the effects of alcohol occur between inbred, recombinant inbred and selectively outbred strains. Two genetic correlations are reported, one between an isoelectric point variant of A7 (a 71 kd, pI 5.4 abundant protein) and resistance to signs of ethanol withdrawal and the other between A12 (a 28 kd, pI 5.6 protein) and ethanol intake. Though tentative, these findings illustrate the power of this approach for behavioral genetic analysis and may allow the biochemical genetic bases of these traits to be understood.

Keywords

Brain Chemistry, Ethanol, Chromosome Mapping, Nerve Tissue Proteins, Substance Withdrawal Syndrome, Mice, Inbred C57BL, Alcoholism, Mice, Species Specificity, Mice, Inbred DBA, Animals, Hybridization, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
Related to Research communities
Energy Research