Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Alcohol
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Alcohol
Article . 1994
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of 3-amino-1,2,4-triazole on brain catalase in the mediation of ethanol consumption in mice

Authors: Zalman Amit; U.M. Koechling;

Effects of 3-amino-1,2,4-triazole on brain catalase in the mediation of ethanol consumption in mice

Abstract

Research has suggested that catalase plays a role in mediating ethanol's psychopharmacological effects. It has been shown that acatalasemic (C3H-A) mice differing in the activity of this enzyme consume larger amounts of ethanol. It has also been reported that when catalase activity is pharmacologically reduced, via 3-amino-1,2,4-triazole (AT), rats reduce their intake and preference for ethanol. The present research attempted to investigate AT's effects in nonselected mice. Swiss Webster mice were randomly assigned to groups of four per cage and further assigned to either a 5%, a 10%, or a 15% ethanol exposure condition. Mice were given a choice between water and increasing 1% concentrations of ethanol starting with 2%. Following five days of baseline, mice were injected daily with either AT (0.5 g/kg) or saline for five days. Results showed that AT significantly reduced ethanol consumption across treatment, but not posttreatment days. Results could not be explained by differences in total fluid intake. These results suggest a role for brain catalase in ethanol consumption across a variety of strains and species and further support the involvement of centrally formed acetaldehyde in the mediation of ethanol's psychopharmacological effects.

Keywords

Male, Alcohol Drinking, Ethanol, Drinking, Brain, Self Administration, Acetaldehyde, Catalase, Food Preferences, Mice, Animals, Amitrole

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Average
Top 10%
Top 10%