Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Pharmacology Environmental Toxicology and Pharmacology
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nanomolar concentrations of ouabain block ethanol-inducible Na+, K+-ATPase activity in brain

Authors: Timothy D. Foley; Markku Linnoila;

Nanomolar concentrations of ouabain block ethanol-inducible Na+, K+-ATPase activity in brain

Abstract

The effect of low concentrations of ethanol on Na+,K(+)-ATPase activity, defined as ouabain-inhibitable 86Rb+ (K+) uptake, was investigated in a crude synaptosome preparation which was subject to minimal subcellular fractionation procedures. Moderate (20-30%) but potent (EC50 = 3.8 mM) stimulation of total ouabain (1 mM)-inhibitable K+ uptake by ethanol was observed following incubation periods of up to 20 min. The activity of the ethanol-induced component of K+ uptake was antagonized by nanomolar concentrations of ouabain. Thus, the moderate stimulation of total ouabain-inhibitable K+ uptake by ethanol was attributable to the activation of a component of K+ uptake which was very sensitive (VS; IC50 = 2.8 x 10(-10) M) to inhibition by ouabain. Slightly higher concentrations of ouabain (10(-9) - 10(-6.6) M) stimulated K+ uptake above control (no ethanol or ouabain) in both the absence and presence of ethanol. The selectivity of the VS-ethanol interaction was demonstrated by the lack of any ethanol effect on two other components of ouabain-inhibitable K+ uptake which accounted for inhibition of K+ uptake by concentrations of ouabain above 10(-6.6) M and were defined as sensitive (S; IC50 = 10(-6) M) and insensitive (I; IC50 = 10(-4) M) to ouabain. These results define the ethanol-inducible component of ouabain-inhibitable Na+,K(+)-ATPase activity and promote the view that changes in Na+,K(+)-ATPase-dependent ion translocation may contribute to ethanol intoxication in vivo.

Keywords

Male, Ethanol, Brain, In Vitro Techniques, Rats, Rats, Sprague-Dawley, Enzyme Induction, Potassium, Animals, Sodium-Potassium-Exchanging ATPase, Ouabain, Rubidium Radioisotopes, Synaptosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average