Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Environm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Atmospheric Environment
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Measurement of nitrous oxide emission from agricultural land using micrometeorological methods

Authors: Hargreaves, K. J.; Wienhold, F. G.; Klemedtsson, L.; Arah, J. R. M.; Beverland, I .J.; Fowler, D.; Galle, B.; +5 Authors

Measurement of nitrous oxide emission from agricultural land using micrometeorological methods

Abstract

The spatial variability of N2O emission from soil makes extrapolation to the field scale very difficult using; conventional chamber techniques ( < 1 m2). Micrometeorological techniques, which integrate N2O fluxes over areas of 0.1 to 1 km2 were therefore developed and compared with chamber methods over arable cropland. Measurements of N2O emission from an unfertilised organic soil (reclaimed from the sea in 1879) were made over a 10 d period at Lammefjord, Denmark. Flux-gradient and conditional sampling techniques were applied using two tunable diode laser spectrometers (TDLs), a Fourier transform infra-red spectrometer (FTIR) and a gas chromatograph (GC). Eddy covariance measurements were also made by the TDLs. Over the 10 d campaign approximately 5 d of continuous fluxes by the different methods were, obtained. Fluxes determined by eddy covariance were in reasonable agreement, showing a mean flux of 269 μg N m2 h−1. Flux-gradient techniques measured a mean flux of 226 μg N m−2 h−1. The mean flux measured by conditional sampling was 379 μg N m−2 h−1. The maximum annual emission of N2O from this soil system was estimated to be 23.5 kg N ha−1.

Countries
Canada, United Kingdom, United Kingdom
Keywords

conditional sampling, 550, flux gradient, nitrous oxide, Eddy covariance, Engineering (General). Civil engineering (General), Ecology and Environment, 630, Atmospheric Sciences, Bowen ratio, Agriculture and Soil Science, greenhouse gas

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze