Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The potential of nuclear magnetic resonance (NMR) in metabolomics and lipidomics of microalgae- a review

Authors: Sanjay Kumar; Makhail S. Vlaskin; Prateek Gururani; Vinod Kumar; Vinod Kumar; Bhawna Bisht; A I Kurbatova; +2 Authors

The potential of nuclear magnetic resonance (NMR) in metabolomics and lipidomics of microalgae- a review

Abstract

Microalgae biotechnology has made it possible to derive secondary bioactive metabolites from microalgae strains that have opened up their entire potential to uncover a wide range of novel metabolic capabilities and turn these into bio-products for the development of sustainable bio-refineries. Nuclear Magnetic Resonance Technology (NMR) has been one of the most successful and functional research technology over the past two decades to analyse the composition, structure and functionality of distinct metabolites in the different microalgae strains. This technology offers qualitative as well as quantitative knowledge about the endogenous metabolites and lipids of low molecular mass to offer a good picture of the physiological state of biological samples in metabolomics and lipidomics studies. Henceforth, this review is aimed at introducing the metabolomics and lipidomics studies into the field of NMR technology and also highlights the protocols for the isolation and metabolic measurements of metabolites from microalgae that should be redirected to resource recovery and value-added products with a systematic and holistic approach for scalability or sustainability.

Country
Russian Federation
Keywords

570, Food Chain, Proton Magnetic Resonance Spectroscopy, 500, 610, Aquaculture, Sustainable, Lipids, NMR, Lipidomics, Microalgae, Solvents, Animals, Metabolomics, Biomass, Biotechnology, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Average
Top 10%