Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ScholarBank@NUSarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Applied Energy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Applied Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Applied Energy
Article . 2021
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrates for cold energy storage and transport: A review

Authors: Zhenyuan Yin; Zhenyuan Yin; Junjie Zheng; Hyunho Kim; Hyunho Kim; Praveen Linga; Yutaek Seo;

Hydrates for cold energy storage and transport: A review

Abstract

The energy demand for space cooling has more than tripled for the past thirty years and was responsible for emissions of about 1 Gt CO2 annually. The ever-increasing energy demand for cooling has posed a demanding question on improving the energy efficiency of cooling processes. On the other hand, with the growing global demand on LNG, cold energy released from LNG terminals has been growing to a historical high at 6.6 × 1014 kJ in 2017. Thus, there is a strong need to search for a suitable phase change material (PCM) best utilizing the cold energy released from the production sectors for storage and transport to the needed sectors. Among all the PCMs, semiclathrate hydrates (SCHs) with a suitable phase change temperature (5–27 °C) and high latent heat (190–220 kJ/kg) stand out as one promising candidate (a) to store and transport the cold energy and (b) to improve the energy efficiency of the cooling processes synergistically. In this review, we focus on reviewing SCHs as a cold energy storage and transport PCM covering both its fundamental properties (thermophysical properties, kinetics of formation and dissociation, rheological and transport properties, and safety and economic aspects) and its novel applications in several cooling processes. Prospects and challenges are also delineated on commercializing SCHs as a key technology enabler for the cold energy industry. There is strong confidence that possible disruptive SCH-based cooling technologies could be developed in the near future for energy efficiency improvement and environmental sustainability.

Country
Singapore
Related Organizations
Keywords

Cold energy utilization, Thermophysical property, 550, Rheological behaviour, 530, Energy industries. Energy policy. Fuel trade, Semiclathrate hydrate, HD9502-9502.5, Kinetic behaviour, Novel process integration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 1%
Top 10%
Top 0.1%
gold