Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Membranesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Membranes
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Membranes
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ion-conducting ceramic membranes for renewable energy technologies

Authors: Dehua Dong; Xiangcheng Liu; Huanting Wang;

Ion-conducting ceramic membranes for renewable energy technologies

Abstract

Dense ceramic membranes with H+ or O2− conductivity have been widely used for fuel production through electro-hydrogenation/dehydrogenation or electro-oxygenation/deoxygenation. Electrochemical conversion processes demonstrate advantages over conventional redox reaction processes in terms of capital cost, energy savings, process intensification and product selectivity. Intermittent renewable power (e.g., solar and wind power) can be used to drive electrochemical processes so that renewable energy is stored in fuels as energy carriers, including hydrogen, ammonia, syngas, methane and ethylene. This review summarizes the pathways to store renewable energy via ion-conducting membrane reactors and discusses the commercialization progress and prospects of these energy technologies.

Related Organizations
Keywords

Yield, Technology, Chemical engineering, Ion-conducting membranes, Renewable energy storage, T, Fuel production, TP155-156, Solid oxide electrolysis cells

Powered by OpenAIRE graph
Found an issue? Give us feedback