
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal solar sorption cooling systems - A review of principle, technology, and applications

Conventional energy consumption in refrigeration is one of the important reasons in global warming. Solar cooling systems are becoming more compact, having lower costs, and are potential alternative technologies, especially in hot and sunny climates. The adsorption, absorption, and dissociative evaporative cooling (DEC) are the technologies used for sorption machines, which are discussed in this review paper. Various multi-criteria performance indicators appearing in the previous studies are discussed, followed by evaluating the benefits and drawbacks of distinguishing sorption solar thermal cooling systems. Market research is conducted to prove the capacity of these technologies. The review shows that compared to other technologies, the solar absorption system is more efficient, so it is very commonly used for cooling applications in various locations. An important topic was also presented using phase change materials and nanofluids in solar sorption systems, that need more research. It is noted from this that most solar cooling systems are hybrid in terms of source and there are multiple applications (cooling - heating and electricity generation). The software packages to study these systems are introduced. Further research is required on desiccant materials that can be regenerated under lower temperatures that would augment the extent of solar desiccant cooling application.
- King Abdulaziz University Saudi Arabia
- Tanta University Egypt
- Qassim University Saudi Arabia
- King Abdulaziz University Saudi Arabia
- Adama Science and Technology University Ethiopia
Solar cooling technologies, Thermal sorption solar cooling, Engineering (General). Civil engineering (General), Absorption, Solar energy, Dissociative evaporative cooling, Adsorption, TA1-2040
Solar cooling technologies, Thermal sorption solar cooling, Engineering (General). Civil engineering (General), Absorption, Solar energy, Dissociative evaporative cooling, Adsorption, TA1-2040
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).45 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
