Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CORE
Article . 2021
License: CC BY NC ND
Data sources: CORE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agriculture Ecosystems & Environment
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agriculture Ecosystems & Environment
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting future stability of ecosystem functioning under climate change

Authors: Paul Caplat; Paul Caplat; Jon M. Yearsley; Hannah J. White; Hannah J. White; Hannah J. White; Mark C. Emmerson;

Predicting future stability of ecosystem functioning under climate change

Abstract

To maintain food security under global change, we need to consider the stability of ecosystem functioning into the future, particularly in resource production landscapes such as agricultural pasture. With ongoing climate change, extreme climatic events are predicted to become more frequent and severe globally, impacting crop production. The whole process of farming will become more uncertain, from choice of crop and crop productivity to the timing of the windows of opportunity for management decisions. Future agricultural policies, therefore, should not only consider changes in grassland production, but also its future stability. We use a case study of agricultural pastures on the island of Ireland to project different components of ecosystem stability (resistance, recovery time and recovery rate) to 2050 and 2080 under different future climate scenarios: a peak and decline scenario; and a continued emissions scenario. We show that future climate change will have substantial effects on both the future resistance and the recovery of ecosystem functioning following environmental disturbances, but the spatial pattern of effect sizes is not the same for these two measures of stability. National level analyses and agricultural policies, therefore, are likely to ignore regional variation in future change. From this, we encourage the translation of stability-based constructs, as well as maximum yield considerations, into future agricultural policy at the regional level.

Country
United Kingdom
Keywords

550, name=SDG 2 - Zero Hunger, /dk/atira/pure/subjectarea/asjc/1100/1103; name=Animal Science and Zoology, name=Animal Science and Zoology, 630, /dk/atira/pure/sustainabledevelopmentgoals/climate_action, name=Ecology, /dk/atira/pure/subjectarea/asjc/2300/2303; name=Ecology, SDG 13 - Climate Action, /dk/atira/pure/sustainabledevelopmentgoals/zero_hunger, Climate change, Pasture, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action, SDG 2 - Zero Hunger, /dk/atira/pure/subjectarea/asjc/2300/2303, /dk/atira/pure/subjectarea/asjc/1100/1102; name=Agronomy and Crop Science, Productivity, /dk/atira/pure/subjectarea/asjc/1100/1102, Ecology, /dk/atira/pure/subjectarea/asjc/1100/1103, Food security, Remote sensing, name=SDG 13 - Climate Action, name=Agronomy and Crop Science, Ecosystem functioning, Animal Science and Zoology, /dk/atira/pure/sustainabledevelopmentgoals/zero_hunger; name=SDG 2 - Zero Hunger, Agronomy and Crop Science, Stability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green
hybrid