Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade Estadua...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agricultural Systems
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agricultural Systems
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use

Authors: Abmael S. Cardoso; Alexandre Berndt; April Leytem; Bruno J.R. Alves; Isabel das N.O. de Carvalho; Luis Henrique de Barros Soares; Segundo Urquiaga; +1 Authors

Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use

Abstract

Brazil has the largest herd of beef cattle in the world, estimated at approximately 200 million animals. Production is predominantly pasture-based and low input and hence time to slaughter is long, which promotes high methane (CH4) emissions per kg of product. The objective of this study was to investigate the impact of increasing animal productivity using fertilizers, forage legumes, supplements and concentrates, on the emissions of greenhouse gases (GHGs) in five scenarios for beef production in Brazil. A life cycle analysis (LCA) approach, from birth of calves to mature animals ready for slaughter at the farm gate, was utilized using Tier 2 methodologies of the IPCC and the results expressed in equivalents of carbon dioxide (CO2eq) per kg of carcass produced. Fossil CO2 emitted in the production of supplements, feeds and fertilizers was included using standard LCA techniques. The first four scenarios were based solely on cattle production on pasture, ranging from degraded Brachiaria pastures, through to a mixed legume/Brachiaria pasture and improved N-fertilized pastures of Guinea grass (Panicum maximum). Scenario 5 was the most intensive and was also based on an N-fertilized Guinea grass pasture, but with a 75-day finishing period in confinement with total mixed ration (TMR). Across the scenarios from 1 to 5 the increase in digestibility promoted a reduction in the forage intake per unit of animal weight gain and a concomitant reduction in CH4 emissions. For the estimation of nitrous oxide (N2O) emissions from animal excreta, emission factors from a study in the Cerrado region were utilized which postulated lower emission from dung than from urine and much lower emissions in the long dry season in this region. The greatest impact of intensification of the beef production systems was a 7-fold reduction of the area necessary for production from 320 to 45 m2/kg carcass. Carcass production increased from 43 to 65 Mg per herd across the scenarios from 1 to 5, and total emissions per kg carcass were estimated to be reduced from 58.3 to 29.4 kg CO2eq/kg carcass. Even though animal weight gain was lower in the mixed grass-legume scenario (3) than for the N-fertilized Guinea grass pastures (scenarios 4 and 5) GHG emissions per kg carcass were similar as the legume N2 fixation input had no fossil-fuel cost. A large source of uncertainty for the construction of such LCAs was the lack of data for enteric CH4 emissions from cattle grazing tropical forages.

Country
Brazil
Keywords

Beef production, 660, Life-cycle analysis, Brachiaria spp., Brachiaria spp, Forage legume, Greenhouse gas emissions, Brazil

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    162
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
162
Top 1%
Top 10%
Top 1%
Green
hybrid