
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada

Abstract Accurately predicting the impacts of higher temperatures, different precipitation rates and elevated CO2 concentrations on crop yields and GHG emissions is required in order to develop adaptation strategies. The objectives of this study were to calibrate and evaluate a regionalized denitrification-decomposition (DNDC) model using measured crop yield, soil temperature, moisture and N2O emissions, and to explore the impacts of climate change scenarios (Representative Concentration Pathways (RCP) 4.5 and RCP 8.5) on crop yields and N2O emissions in Southwestern Ontario, Canada. This simulation study was based on a winter wheat-maize-soybean rotation under conventional tillage (CT) and no tillage (NT) practices at Woodslee, Ontario, Canada. The model was calibrated using various statistics including the d index (0.85–0.99), NSE (Nash-Sutcliffe efficiency, NSE > 0) and nRMSE (normalized root mean square error, nRMSE
- Institute of Agricultural Resources and Regional Planning China (People's Republic of)
- Agriculture and Agriculture-Food Canada Canada
- Harrow Research and Development Centre Canada
- Harrow Research and Development Centre Canada
- Chinese Academy of Agricultural Sciences China (People's Republic of)
DNDC model, Nitrous oxide emissions, Soil temperature, Climate change, Crop yield, Moisture
DNDC model, Nitrous oxide emissions, Soil temperature, Climate change, Crop yield, Moisture
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).77 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
