Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agricultural Water Management
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drought frequency change: An assessment in northern India plains

Authors: Yan Ge; Ximing Cai; Tingju Zhu; Claudia Ringler;

Drought frequency change: An assessment in northern India plains

Abstract

Abstract Following the debate on whether drought has become more severe under climate change, this paper assesses drought frequency in northern and eastern India using two datasets of Palmer Drought Severity Index (PDSI) (generated by Dai, 2013 and Sheffield et al., 2012 ). The univariate return period for three drought characteristics (duration, severity and peak intensity) is examined regarding whether drought has occurred with longer duration, higher severity and/or larger peak intensity. The spatial variation of those changes is analyzed through eight areas in the study region. The temporal and spatial comparisons based on the univariate return period show different change patterns of duration, severity and peak intensity in different areas. Generally, in the areas which plant wheat more than rice (areas 1 and 2), drought has been alleviated in duration and intensity after 1955; while in the areas which plant more rice than wheat (areas 3–8), drought have been aggravated in duration, severity and intensity (except for area 8, a coastal area). This spatial change pattern may imply potential crop pattern change, for example, switching from rice to wheat in areas 3–7. Furthermore, the bivariate return period for pairs of drought characteristics based on the copulas and considering correlation between the drought characteristics is examined to understand how bivariate return periods change over time and space. Finally, it is also found that one data set (Sheffield et al.) results in more severe, longer and more intense drought in most of the areas, especially for the drought events with long-return-periods than the other (Dai).

Country
France
Keywords

food security, climate change, agriculture

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Green