Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agricultural Water Management
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

Potential and versatility of WEAP model (Water Evaluation and Planning System) for hydrological assessments of AWD (Alternate Wetting and Drying) in irrigated rice

Authors: orcid bw Bjoern Ole Sander;
Bjoern Ole Sander
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Bjoern Ole Sander in OpenAIRE
Pia Schneider; Reiner Wassmann; Reiner Wassmann; orcid Folkard Asch;
Folkard Asch
ORCID
Harvested from ORCID Public Data File

Folkard Asch in OpenAIRE

Potential and versatility of WEAP model (Water Evaluation and Planning System) for hydrological assessments of AWD (Alternate Wetting and Drying) in irrigated rice

Abstract

Abstract The production of irrigated rice is increasingly challenged by freshwater scarcity. Water saving technologies such as Alternate Wetting and Drying (AWD) allow sustaining production levels under reduced water availability. Before implementing such innovations on a large scale, their hydrological impact on the system needs to be assessed. This study investigated the applicability of the water management tool WEAP (Water Evaluation and Planning System) for evaluating the effects of AWD on water use and water resources at field and irrigation system level for two different case studies in Central Luzon, the Philippines. In the first study, the Zeigler Experiment Station (ZES) of the International Rice Research Institute (IRRI) was used for parameterization of WEAP and field-scale assessment of AWD, making use of the availability of spatially and temporally highly resolved data. In the second study, WEAP was applied to an irrigation scheme in the Philippines, the Angat-Maasim River Irrigation System (AMRIS) to assess effects on up- and downstream water resources using lower resolution data. Simulated AWD implementation during the dry season reduced water requirements by 12–27% and 34.3% on ZES and AMRIS, respectively. Additionally, AWD implementation enhanced streamflow in main and lateral canals, and thus increased water availability in the entire irrigation system. We also conducted an ex-ante assessment of future freshwater availability assuming reduced precipitation due to climate change effects alongside with irrigation supply at current levels. WEAP showed that water levels in the reservoir will substantially decline under these circumstances leading to severe water stress in AMRIS. Implementing AWD in such a scenario improved water availability in the system by up to 50%. WEAP proved to be a suitable tool for upscaling different irrigation techniques and assessing their impact on water resources on a large scale. Limitations of the approach and future possibilities for improvements are discussed.

Countries
France, Germany, France
Keywords

info:eu-repo/classification/ddc/550, 550, ddc:550, rice, food security, irrigation, modelling, Earth sciences, climate change, water management, agriculture

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
bronze