Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alcoholarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alcohol
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Alcohol
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of GABA-B, metabotropic glutamate, and opioid receptor involvement in an animal model of binge drinking

Authors: Michelle A. Tanchuck; Naomi Yoneyama; Deborah A. Finn; Deborah A. Finn; Matthew M. Ford; Andrea M. Fretwell;

Assessment of GABA-B, metabotropic glutamate, and opioid receptor involvement in an animal model of binge drinking

Abstract

Drinking to intoxication or binge drinking is a hallmark characteristic of alcohol abuse. Although hard to model in rodents, the scheduled high alcohol consumption (SHAC) procedure generates high, stable ethanol intake and blood ethanol concentrations in mice to levels consistent with definitions of binge drinking. The purpose of the present studies was to determine the effects of pharmacological manipulation of the opioidergic, glutamatergic, and γ-aminobutyric acid (GABA)ergic systems on binge drinking with the SHAC procedure. Parallel manipulations were conducted in mice trained in operant self-administration of either sucrose or ethanol. For the SHAC procedure, genetically heterogeneous Withdrawal Seizure Control mice were given varying periods of fluid access, with a 30-min ethanol session every third day (total of seven). Mice were pretreated intraperitoneally with naltrexone (0, 0.6, or 1.25 mg/kg), baclofen (0, 2.5, or 5.0 mg/kg), or 2-methyl-6-(phenylethynyl)-pyridine (MPEP; 0, 3.0, or 10.0 mg/kg) before each ethanol session. For the operant self-administration procedure, separate groups of C57BL/6 mice were trained to complete a single response requirement (16 presses on the active lever) to gain 30 min of access to an ethanol or a sucrose solution. Mice received pretreatments of the same doses of naltrexone, MPEP, or baclofen before the self-administration sessions, with saline injections on intervening days. Naltrexone produced a dose-dependent decrease in binge drinking, and the highest dose also significantly decreased operant self-administration of ethanol and sucrose. Both doses of baclofen significantly decreased binge alcohol consumption, but the higher dose also tended to decrease water intake. The highest dose of baclofen also significantly decreased operant self-administration of sucrose. MPEP (10 mg/kg) significantly decreased binge alcohol consumption and sucrose self-administration. These results indicate that manipulation of the opioidergic, glutamatergic, and GABAergic systems significantly decreased binge drinking.

Keywords

Male, Baclofen, Sucrose, Alcohol Drinking, Ethanol, Pyridines, Narcotic Antagonists, Self Administration, Receptors, Metabotropic Glutamate, Naltrexone, Mice, Inbred C57BL, Disease Models, Animal, Mice, Receptors, GABA-B, GABA-B Receptor Agonists, Receptors, Opioid, Animals, Excitatory Amino Acid Antagonists

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Energy Research