Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Catalysis B ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Catalysis B Environmental
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2016
Data sources: IRIS Cnr
CNR ExploRA
Article . 2016
Data sources: CNR ExploRA
Digital.CSIC
Article . 2016 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sulfurized carbon xerogels as Pt support with enhanced activity for fuel cell applications

Authors: David Sebastián; Cinthia Alegre; Rafael Moliner; María Jesús Lázaro; Maria Elena Galvez; Maria Elena Galvez;

Sulfurized carbon xerogels as Pt support with enhanced activity for fuel cell applications

Abstract

Carbon xerogels represent nowadays an outstanding alternative to carbon blacks for the preparation of efficient fuel cell electrocatalysts, due to their easily tunable and well developed mesoporous structure. To further improve both activity and durability of Pt/C catalysts, the introduction of heteroatoms (such as O, N, S, P, B, etc.) in the structure of carbon materials has been proposed. In the present work, highly mesoporous carbon xerogels (CXGs) have been subjected to a sulfurization process with elemental sulfur. The insertion of S into the carbon matrix does not compromise their mesoporous structure. Pt catalysts supported on sulfurized carbon xerogels show enhanced catalytic activity towards both the methanol electro-oxidation and the oxygen electro-reduction reactions, exceeding not only the performance of the catalyst supported on the bare xerogel, but also of the catalyst supported on a commercial carbon black. The sulfurization treatment is also effective in improving the resistance of Pt/CXG catalysts towards corrosion phenomena occurring at the fuel cell cathode. The authors wish to thank the Spanish Ministry of Economy and Competitiveness (Secretaría de Estado de I+D+I) and FEDER for financial support under the project CTQ2011-28913-C02-01. Peer reviewed

Countries
Italy, Spain
Keywords

Methanol oxidation reaction, Fuel cell, Carbon xerogels, Carbon xerogel, Sulfur, Oxygen reduction reaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 372
    download downloads 27
  • 372
    views
    27
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC37227
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
45
Top 10%
Top 10%
Top 10%
372
27
Green
bronze
Related to Research communities
Energy Research